Positive and negative control of Serrate expression during early development of the Drosophila wing
نویسندگان
چکیده
The product of the Drosophila gene Serrate acts as a short-range signal during wing development to induce the organising centre at the dorsal/ventral compartment boundary, from which growth and patterning of the wing is controlled. Regulatory elements reflecting the early Serrate expression in the dorsal compartment of the wing disc have recently been confined to a genomic fragment in the 5'-upstream region of the gene. Here we present data to suggest that this fragment responds to various positive and negative inputs required for the early Serrate expression. First, activation and maintenance of expression in the dorsal compartment of the wing discs of second and early third instar larvae depends on apterous, as revealed by reporter gene expression in discs either lacking or ectopically expressing apterous. Second, transcriptional downregulation during third larval instar is mediated by hiiragi. Finally, this regulatory element responds to Delta signalling in a nonautonomous way to maintain Serrate expression along the dorsal margin. The results clearly show that some of the previously described transactivators of Serrate protein expression, e.g. fringe, act on elements required for later aspects of Serrate expression.
منابع مشابه
Interactions among Delta, Serrate and Fringe modulate Notch activity during Drosophila wing development.
The Notch signalling pathway plays an important role during the development of the wing primordium, especially of the wing blade and margin. In these processes, the activity of Notch is controlled by the activity of the dorsal specific nuclear protein Apterous, which regulates the expression of the Notch ligand, Serrate, and the Fringe signalling molecule. The other Notch ligand, Delta, also pl...
متن کاملThe Serrate locus of Drosophila and its role in morphogenesis of the wing imaginal discs: control of cell proliferation.
The Drosophila gene Serrate encodes a transmembrane protein with 14 EGF-like repeats in its extracellular domain. Here we show that loss-of-function mutations in this gene lead to larval lethality. Homozygous mutant larvae fail to differentiate the anterior spiracles, exhibit poorly developed mouth-hooks and show a severe reduction in the size of the wing and haltere primordia, which is not due...
متن کاملTemporal regulation of apterous activity during development of the Drosophila wing.
Dorsoventral axis formation in the Drosophila wing depends on the activity of the selector gene apterous. Although selector genes are usually thought of as binary developmental switches, we find that Apterous activity is negatively regulated during wing development by its target gene dLMO. Apterous-dependent expression of Serrate and fringe in dorsal cells leads to the restricted activation of ...
متن کاملSecreted forms of DELTA and SERRATE define antagonists of Notch signaling in Drosophila.
We examined the function of secreted forms of the two known Drosophila Notch ligands, DELTA and SERRATE, by expressing them under various promoters in the Drosophila developing eye and wing. The phenotypes associated with the expression of secreted Delta (DlS) or secreted Serrate (SerS) forms mimic loss-of-function mutations in the Notch pathway. Both genetic interactions between DlS or SerS tr...
متن کاملPhenotypic and molecular characterization of SerD, a dominant allele of the Drosophila gene Serrate.
The Drosophila gene Serrate (Ser) encodes a transmembrane protein with 14 epidermal growth factor--like repeats in its extracellular domain, which is required for the control of cell proliferation and pattern formation during wing development. Flies hetero- or homozygous for the dominant mutation SerD exhibit scalloping of the wing margin due to cell death during pupal stages. SerD is associate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mechanisms of Development
دوره 76 شماره
صفحات -
تاریخ انتشار 1998